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* INOMENCLATURE

a radius of the circular cylinder

j alj added mass or moment coefficient

d gap between the cylinder and the bottom of the sea

D volume of the cylinder

g gravitational acceleration

h depth of water

Hk ik + i Yk Hankel function

i

I k Modified Bessel function, first kind of order k

Jk Bessel function first kind of order k

Kn  Modified Bessel function, second kind of order k

momq as defined by theequation 2.22, 2.23

n normal vector

position vector

t draft of the cylinder

v velocity

x,y,z cartesian coordinate system

Yk Bessel function, second kind of order k

Zk function defined by equation 2.18, 2.19

6 Kronecker delta '"':1, i4p
ii it

o angular position in cylindrical coordinates ro.

* p fluid density

, velocity potentials D t b_

2a/g ,,., rV :b 1,"..

W radian frequency Avjst
Dist ~ .



HYDRODYNAMIC COEFFICIENTS FOR VERTICAL CIRCULAR CYLINDERS

AT FINITE DEPTH

L ABSTRACT

774 Hydrodynamic coefficients for vertical circular cylindersat finite

* water depth are obtained and presented for different depth to radius

and draft to radius ratios. A summary of equations for computer application

is also presented. Limiting values for heave added mass for zero frequency

is also discussed.

1. INTRODUCTION

Vertical circular cylinders are used in many oceanographic applications

such as buoys, drilling rigs and instrumentation platform for their simplicity

in construction. The available data on their hydrodynamic coefficients is

limited and the present numerical procedures are based on finite element

solutions or the numerical solutions of integral equations. The present

method is relatively simple to formulate and the solution requires a very

* short computer time. The hydrodynamic coefficients such as added mass,

damping coefficients for heave, sway and pitch motions are formulated and

the results for different depth to radius and draft to radius values are

presented in graphical form.

Havelock (1955) theoretically determined the aded mass and

damping coefficients for a sphere. Kim (1965) studied the hydrodynamic

coefficients for elipsoldal bodies oscillating at the free surface. Shen

Wang (1966) calculated the added mass and damping coefficients of sphere

in infinite and finite depth of water. Garrison (1975) gave the general

formulation of these coefficients for arbitrary forms in terms of

distributed singularities and the numerical results for a vertical circular



cylinder in infinite and finite depth of water. Bai and Yeung (1974)

calculated added mass coefficients for horizontal and vertical cylinders.

Bat (1976) gave the added mass and damping coefficients for axisymmetric

ocean platforms Kritis (1979) had applied the hybrid integral method

of Yeung to axisynnmetric bodies and gave numerical results for a circular

cylinder.

The various methods developed for the solution of three dimensional

axisynmuetrical bodies can be summarized as follows. In the first group

of methods Sources and Multipoles are distributed inside the body and their

strength is calculated to satisfy impermeable boundary conditions of the

body. The second set of solutions distributes the singularities at the

surface of the body and an integral equation is used through the use

of Green's theorem. The solution of the integral equation gives the

strength of the singularities. Thirdly, the finite element formulation is

used to find the velocity potential at specified node points. Possible

combinations such as the Hybrid method referred above also exist, combining

the above solutions and reducing the computational effort. The present

formulation follows the general procedure outlined by Garrett (1970) who

studied thescattering of waves at the presence of circular docks.

Although it is of major concern to Naval Architects and ocean

engineers very few data exist on the hydrodynamic coefficients of circular

cylinders. Serving to this aim graphical results covering a large range

of parameters and summary formulas for computer applications are presented

in this paper.

2. FORMULATION AND SOLUTION OF THE PROBLEM

The coordinate system Oxyz is shown in Figure 1. The origin is

at the bottom and z is positive upwards. The region O<z<h is assumed
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to be filled by an incompressible fluid of density p. The undisturbed

free surface is at z = h. The radius of the cylinder is a and draft

jl T = h - d.where d is the gap between the cylinder and the bottom. The

standard small motion assumptions are made and the motion is periodicU
with frequency u. An irrotatlonal flow is assumed to exist given by

I (r,o,z;t) = Re{i(r,e,z) e- iwt} (2.1)

where r,e,z are cylindrical coordinates and e = o corresponds to the

positive xaxis. f (r,e,z) is a complex spatial velocity potential which

satisfies: 2 22
(a 1 a 1 a2  222(ar i +F Tr -r2 -) o (2.2)

in the fluid region.

The boundary conditions for different motions of the cylinder are

given below.

At the free surface 
a! z - = o at z :h (2.3)

rz o at z = o (2.4)
> >

I% n + 6'0 x) (2.5)

on the body surface where n is the normal to the surface. For heave motion

and= Vz on z = d (2.6)

I and

- o on r - a for d< z< h (2.7)
ar

where VH is the velocity of the cylinder due to heaving motion alone.

For sway motion

• - -=o on z = d (2.8)

at Vs cose at r = a for d< z< h (2.9)

where Vs is the velocity of the cylinder due to sway motion alone.
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For pitching motion

a= r cose (2.10)

_- = n (h-z) cose (2.11)

where a is the angular speed of pitching motion.

Following Gerrett's method the fluid is divided into two parts namely

the interior part ABCD and the exterior part ACEF as in Figure 1. The

appropriate solution of velocity potential in each region is found

and the solutions are matched at the boundary so as to have the continuity

in # and its first derivatives are satisfied. The velocity potential in

the interior domain is expressed as

* = Dk [,k (r,z) +,kh (r,z)] cosKe for o<r<a o< z < d (2.12)

where k = o refers to heave motion and k = 1 refers to sway and pitch motion.

k and 0k are the particular and homogeneous solutions in the interiorp h

region.

The particular solutions for different motions are given as

0 (r.2) = 1 (z2 - r2 for heave (*) (2.13)

1 (r2) -o for sway (2.14)p

1 (r,2) = AT (r z2 - r3 )for pitch (2.15)

The particular solutions satisfy the respective kinematic conditions at

the bottom of the cylinder and the bottom of the fluid for r< a given

by the equation (2.4) through (2.11). Dk is a constant of dimension

[L2/T] and is chosen to fit the particular motion of the cylinder.

In the exterior region the velocity potential is given in terms of

etgen expansion.

(*) A particular solution for heave motion is suggested by Professor J.M.
Newman of M.I.T.
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- = D e (rz) (2.16)

Hk(mr) Z () +E Bk  K (mq ) Z (z) (2.17)
Ol o k1 k (iq , q

I where Hk is the Hankel function of the first kind of order K = 0,1

and Kk is the modified Besselfunction of the second kind of order K = 0,1.

Bok and Bq are complex unknowns. The orthonornal Zi functions in the interval

o<z<h are defined as

Zo (z) = No1 2 cosh (m Z) (2.18)0 10

Zq (z) =N 1/2 cos (mqz) (2.19)q ~qq
with

o = 1 + sinh (2 m.h))
2 mohj.

q 1[1 + - m hl(2.21)

where mo and mq are the solution of the equations
2

Ni0 tanh (m h) (2.22)
2_ (2.23)

mq tan (m h) = - (
q q g

To satisfy the continuity of velocity potential at r = a for

o<z<d homogeneous solution defined above is used as follows
k ak z 2.k

(a ,z ) + * (a ,z ) ( z )2 4

Sk (az) (2.25

Sr k (a,z) + *h (a,z)] k (az) (

for o<z<d.

The value of homogeneous potential at r = a can be expanded as

*kh (a,z) Ak cos (2.26)

For continuity of potential function coefficients Ak s are obtained

using (2.24) as:

Ak . 2 [k (az) - 0k (a,z)] cos (nz) dz (2.27)n 0 f *e ' p
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The particular solution is a known function therefore Akcan

be expressed as

Ak 2 d *k (z)cos (1 z)r~ d. - ak(2.28)
n ' *e (az

where k 2 #kk = 0.9
a n d *k (az) cos (nwz/d) dz

0

The interior homogeneous solution can be written now as

nr~l + ~ 'k Anr/ o (2.30)

in r<a, o<zcd

Multiplying the equation (2.25) by Zq (z) and considering that

(,Ez) = V cose for dczch and integrating between limits in o and har
one obtains dk

k(moa) a Oh (a,z) *Z0 (z) dz + oa231a
0 (h M) H ar

Bk (q) K a d k (a~z) -Zq(z) dz + 0 (2.31-b)
q q (q o/ a r ,

forq =1,2,...

where
k 1 h 7
o I n az (z) dz+ Di ' Z(~ z(2.32)

k ar Zq (zdz + h VZ (z) dz (2.33) 1'Iq~ a~4 z ri' d1 Vz)q
0d

Where V = 0 for heave, V - Vs for sway and V = a (h-z) for pitch
s4

motion.

Inserting the values of 0 from (2.17) into equation (2.27) and

10from (2.28) into (2.31-a) and (2.31-b) we obtain
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Ii
Ak ={Bk *Hk ''* Eo + ql k (mqa' E an- (2.34)

E n =  (nna/d) for n = 0,1,2,...k B = (:o .Eo +  A '
E n=l n T k (nra/d) *kEon 3 k

_ _,_ _ _+ ,__ (2.35-a)

1 (moh) Hk (moa) (moh) Hk' (m0a)

kd k Ak nr Ik (nra/d)0 k o+ An T Ik (nwa/d) Eqn k

B k En+ (2.35-b)
q (mqh) Kk (mqa) (mqh) Kk'(mqa)

The equations (2.34), and (2.35-a,b) form a coupled system of equations

where Ak and k are the unknownt. Substituting B from (2.35-a,b) into
r n a q

(2.34), a set of linear equations for An are obtained.I
Thus.- k k hk for n =0, 1, 2, (2.36)

where HK(moa) E o E Kk(m.a) Em- E

y nj HK (Moa) moh + Kk-hnila (2.37)

k = Hk(moa) Bo Eon + _ " k (2.38)
n (Hk (noa) moh  q=l Enmqh

where 6nj kronecker delta

4k

IU bIo (jvra/d)/Ik(jBa/d), for 1,2,3,... (2.39

U° = d (2.40

-. qn a Zq(z)cos (n7z/d) dz (2.41)

t 3. HYDRODYNAMIC FORCES AND MOMENTS IN TERMS OF THE VELOCITY POTENTIAL.

The forces and moments are defined by the integrals taken over the

body surface as follows:

I7
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'= - -' i ds (3.1 )
at s

at ff=- i-*.,/ ' (iFXi) ds (3.2)

The added mass and damping coefficients are calculated in the following

manner. all bll DPu+ i -- = -D f'f O(rO,z) n, ds(3)

S

a16  b16  D1

pD + i a- = - ff 0 (r,e,z).(r i') ds (3.4)

a22 b22  Do
-u+ i = 7P !f $ (ro,z) n2 ds (3.5)

s

a66 b66  D1  1
a 1 = +-b6.IffoI (r,e,z) (rx'n) ds (3.6)

61+ i D1 1D $  (r,o,z) n ds (3.7)

PD + p---D p s n1 (3)

where D is the volume of the cylinder, al and b11 are sway added

mass and damping coefficients and a16 and b16 are sway induced pitch

added moment and damping coefficient, a22 and b22 are the heave added

mass and damping coefficients, a61 and b61 pitch induced added mass

and damping coefficients. Here 01 in (3.3) and (3.4) is the potential

for sway motions, and tI in (3.6) and (3.7) is the potential for pitch

motion.

For reasons of symmetry

a1 6 = a61

b16 = b61 
_

a44 = a66

b44 =66
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t.
The heave added mass and damping coefficients in particular are given

by

a22 + b22 2pd a o (r,d) + €° (rd)] dr (3.8)
PD - i P-Db- 6 p h

Using o and 0 form quation (2.13) and (2.30) into (3.8) and integrating
Ph

a 22 b b22 d (a)2 2d R -)nI~~ad 39B+i -- U -{ - +}O 2,,-lnad
o cT 2-- )+ A a-)n~ n (~n a/d) 39

Similar calculations are made for other added mass and damping

coefficients and these formulas are given below.

all b  1 Hl(moa) [sh(moh)-shmod] BI K1(Na)[sin(mfh)-sin(mNd)]p--D- = o Nol/Zm(h-d) +E Bl K~q
+ i o B q=l N q (h-d)

(3.10)

66 b66 d3  d NC 2Hl oa) l - 12 B +
-- + i -p -hd)a - to (mo  B1 + l t q N K (Na) B

oD 1D hdP a0 o q=i q 1 q

2 2 1 (a 1 1 (n I a/d)I(o An I 1 (na/d) 
] }

a16 + i b16 - d E{[tN 1 / 2 1 END H,- (moa) Bo tq K~ (n a ) B]+
pDa WPDa h--d 0 0 H1 ( 0B q=lt

1 (-) A' + l .L)ff A1  12(nira/d)

1 n=l n n 11 (nira/d) (3.12)

where
t o = 10I- 1 sh(mnd) ch(moh)-chim -d)

= c(1- ) sin cos (Mgh) -cos (ad)(.
a61  = ' 1l d DdV (3.11)

a61 + 1 d 2 B H, (moa) No-1/ 2 shmoh- shmnd
a +  pD a- 0  omo(h-d )  q q

sin roqh - sin d
ma(h-d) (3.13)
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4. LIMITING VALUES FOR HEAVE ADDED MASS AND DAMPING COEFFICIENTS FOR w u.

As the frequency of the motion w approaches to zero the values of

mo given by (2.22) goes to zero as well while mq h values tend to qir.

The coefficients of the linear equation (2.36) become real and the

formulation correspond to the case where rigid boundary conditions exist

at the free surface. The only imaginary value is the imaginary part of

A which Is equal to

Im Ao = A i a2  (4.1)

From which using 3.9 the damping coefficient is immediately obtained as:

lim b22  a2 (.2o p-'b - =  h--~h-Z-d)(4.2)
W -0 wp 4h(h-d)

The above result can be also obtained by using the Haskinds relations

given for finite depth by Newmann (1976). The equation(2.36),I37)and

e.38) for heave motion are

o YA?.o + ho (4.3)A° j=l oj A 0o
J 0

j=l Yn A= hn  (4.4)

Ho(moa) KEonEoj + a) EnEj oYn -E =  + [  -o (o) mh QIK (mia)" mqh ] 1- n (4.5)
0 H'(ma) m h E- ()

h={H°'(ma) 8 °°oh E00 l 1 Og - (l- a)} (4.6)
W 0 +

H0(moa) oE oEn
moa) "moih +0H0o  q=l 9h

The above equations for very small m values can be written as follows

10



- a(Oj) + I mo2 8 (0,j) (4.8)

Ynj= a(nij) + i m04 B(nj) (4.9)

where

a (n,j) = { 6 + 4id2h2 Il(Jra/d) (-I) J n - = Ko(cra/h)

o(ra/d) ql (qwa/h)

q (sin (qwd/h))
2

[(qv)2- (nh)2j [(qd)Z (jh)'] (4.10)

2 ah - K(q-nafh) 1 21 l 2  2q=l Kl(qra/h) " q  (sin qd - (- id/-h--1 (4.10)

2ah2  n Ko(qa/h) 1 (sin qd/h) (-1)na2dmo2h n = E a (-r 3 d K --- ' w ) - a h[' (q d )z - (n ff)z j -... , Z " +  i
(nre 1 hn' }

(4.11)

After these preparations taking the limit of (4.4) for very small mo

values and using (4.8), (4.9), (4.11) we obtain

(A + i A (a (n,j) + i m4  (n.j)] = hrn + i m2 h. (4.12)

31l 3i 0 rn 0 in

Here subscript r and i refer to the real and imaginary part of the values.

Separating into real and imaginary parts

E [Arj i 4 a (nij) + A.. a (n,j,)] = h 2

0 -l in 0

4
[A4 (n)-A 0 8(n,j)j = hAri (n)-ij mo  = rn

Taking the limit of the right hand side of the first equations as too. o

we obtain
00 4

AE [A (n,j) + m (nj)] h
j=1 rj 0 rn

and Ai a(nj) = - (nj An

11



One can see therefore that all A.' s, j = 1,2... have real values.

As a special case let's take a floating disc. This can be expressed

as a limiting case where d-h. One can show that for this case the equation

4.4 has a diagonal matrix and the unknown An s are given by

An = _- 1 n = 1,2 ...

A 1 1 a 2  (4.13)

Since all sine terms In equation 4.12 are equal to zero. The added mass

of the circular disc in heaving motion for w o is obtained as

lrn 22 hC.+I(a 4 h 8 1 Il (nira/h) (4.14)
w--o a n=l 0 (nna/h)

In another limiting case where d goes to zero, again all the sine

terms in equation 4.12 are equal to zero and the coefficient matrix becomes

diagonal. In this case one can show that as w and d go to zero the heave

added massin fact is infinite. According to this present theory one can

conjecture that for d<h and at finite h the heave added mass remain finite

at low frequencies but qoes to infinity for infinite depth.

5. NUMERIC SOLUTION AND RESULTS.

The specific formulas used for the calculation of added mass and damping

coefficients are given in the Appendix The required routines for the

calculation of Bessel functions and solution of linear equation are obtained

from IMSL computer library. The computations were done at the U. S. Naval

Academy. The results for heave were first compared to the results published

by Garrison (1975) and Kritls (1979). The results are given In Figure 2.

Added mass values obtained by this theory cmpared well with those of

Kritis while Garrison's number are observed to be higher. The damping

coefficients for heave are observed to be less than the values reported

12



by Kritis (1979) and they were observed to agrf better with those of Garrison.

The heave added mass and damping coefficients are also compared with

the experimental data reported by McCormick, et al (1980).

Figure 3 shows experimental data and theoretical values computed for

w = 3 rad/sec. In this diagram added mass value is nondimensionalized by

the total mass of the cylinder of height equal to the depth of water.

This is expressed in the diagram as ANU/MH. The experimental data are

observed to remain above the theoretical curve the best correlation is

observed at about depth/radius values equal to 7.

Experimental and theoretical damping coefficients are compared

in Figure 4. Experimental values remained above the theoretical calculation

while showing similar trends. This discrepency can be possibly explained

by the viscous damping neglected by the theory. The numerical results are

also tested with those reported by J. Bai (9 6) and the resultsfor added

mass and damping coefficients are observed to agree with in a derivation of

3 percent. In all calculations the infinite series are represented by

20 terms.

The heave added mass values for different water depths and draft values

are given in Figures 5 to 'l. The general behavior of the curves is that as the

frequency increases the values remain constant.At zero frequency numerically

at least the added mass values are observed to increase. The behavior of

the curves at small frequency is discussed in section 4. Damping coefficients

for heave are given in Figures 12 to 17. At high frequencies these values

are observed to tend to zero while at zero frequency the values are finite

at shallow depth and tend to approach zero as the depth increases. Higher

values are observed to correspond to small draft to radius values. Deep

water cases correspond to h/a =20.

13



The sway calculations are compared to the results published by

Bal, Yeung (1974) and are presented in Figure 19. This computation tends to

follow the values computed by Bai while the values reported by Isshlkl

remained low especially at peak values. Figures 20 to 25 show the sway

added mass values. Added mass values are observed to increase as draft

to radius is increased at all depths. These values also remained finite

at small frequencies. All curves are observed to have a local maximum at

about v = 1. Damping coefficients for sway are equal to zero at zero

frequencies and are observed to increase as the draft increases. The curves

for damping coefficients are given in Figures 26 to 31. At high frequencies

the curves show a decreasing slope and the maximum values are again observed

at about v = 1. Pitch computations are first checked with those reported by Bai

and Garrison and a good agreement is observed.

Pitch moment of inertias are presented in Figures 32 to 37. Except

at very small drafts the curves have a very small slope. Inertia coefficients

are observed to decrease as draft increases at shallow waters while in

deep water higher coefficients correspond to higher drafts. Figures 38 to

43 give thepitch damping coefficients. At shallow water (h/a = 1 h/a - 3)

high damping coefficients correspond to small drafts while at deep water

(h/a = 20) high damping coefficients are observed to correspond to high

drafts. A peculiar curve is seen in Figure 42 for T/A = 0.1 which suggests

that the damping coefficient for very shallow disks increases as draft

decreases even at moderately deep waters. Pitch induced sway added mass

(a 6 1 ) and pitch induced sway damping coefficients b6 1 are giVen fn igure 44-46.

It is interesting to note that some of these values are in fact negative

for low drafts at finite depths such as h/a = 3 but as the draft increases

the values become positive.

14



CONCLUSION

The solution presented in this paper offers a quick calculation of
the hydrodynamic coefficients for a simple verticAl circular cylinder.
The results are compared to some available experimental numerical results.
The agreement with numerical results are observed to be satisfactory. The
comparisons with the experimental showed that even though the trend is
well represented the amplitudes are not. This is partially acceptable at
least for the case of damping coefficients where the viscous resistance
must be effective. The input variables are water depth, radius of cylinder
and its draft. Well documented routines can be used for the calculation of
special functions and the solution of the linear equations. The necessary
formulas for computer application are also presented.

The hydrodynamic coefficient to study the motion of the cylinder are
presented in graphical format. It is hoped that this will increase the
efficiency of future designs and that the designer will be able to estimate
these coefficients rather precisely for his computations.

The limit of the heave added mass value for zero frequency is also
discussed. It is shown that this quantity remains finite for finite depth
and goes to infinity for infinite water depth. Special formulations are
seen to be required for this limiting case.

The present formulation is currently extended to cylinders with vari-
able cross sections.

Ii
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APPEND)IX

FORMULAS FOR COMPUTER APPLICATIONS

A-Heave

The linear set of equations for complex coefficients

Ynj A = hn

is solved first. The expression for y nj and hn, are given below

= 6 1 U( p~ 0Ko (m qa) 32 U.iTp 0(nj)
Yn (j +1 ( 0 nj)+ Z K (ma) Pq(n~j)) +i J7 0

a Ko(m a) 
______hi= L p (i,o) + E (ma P(i~o) - + ~ i d TPf (.oi

d 0q=l q( r 7md 0 O

where

nU 2

P (n~j) = (-)n (mod sh (mod))2

0 [(2m 0h) + sh(2m 0h)][(m 0d)2 +' (nir) 2 [(mo d) 2-+(jnf)2]

(-1)n (m qd sln(mqd))2

P q(n,j) = [(2m q h) + sin(2mh)][((Md) 2 _ (nW)2 ][(mqd) 2  OW-

J0(m 0a) Jl (moa) + Y0(moa) Yl(moa)

L= 2
[(m)1+ Y 1(Ma)]



The added mass and damping coefficients are then computed by the following

equation.

p0 upD h-d 2 8 d' 2 w an.l n Io(I1W)

where a 22, b22 are the added mass and damping for heave, D is the volume

of the cylinder in water.

B. Sway

The linear set of equations for sway can be written in the form:

where

Yn n + 16U [L.P (n~i) + E D0 P (n 'j) - 2. U..-T-P (n
n j0q=l q q imn0o n

d .LP(~) o16hn r~ DL0 noK E 0  Pq (n ,o)Kk I - --m~ T-Po(n,o)Ko

and where
= 1(jlra)

2 j1 ~a fo r =1,2, . and U

2 2 12 2 2
T [J 0 (moa) + Y0(moa)] + (moa)2' [J1(moa) + Yl (moa)I m-

pJ0 (maJI(moa) + Y0(moa)YI(moa)lff

L {[J (m a)j1(moa) + V Cmoa) lmcoa)] - iIJ(moa) + Yl (moa)]).T

K= s(m 0h - sh(mod), Kq =sin(mqh) - sin(m d)

sh(mod) si' q d

-k = mq a q z 1, 2, 3,..
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The definition for Po and pq remain the same as in heave.

The sway added mass and damping coefficients are obtained as

a1  +  o - ( sh(mh)-sh(md)) ] K a)sin(m h)-sin(mqd)]11 B1 OD ImkaIs~n lnrgdq+ 14=1 B ,(inoa)pD- wpD 0N 0l mo(h-d) q=1 q N k in (h-d)

where 1

B- I {R 1 0 AUn E 1+ q
q h-mF'(a) {4 d Eqo qn hmq '(a)

q q nIq

n = o, 1, 2, .. q = o, 1, 2,

S(-1)n 0 -'2m0 d sh(mod)
~n - [(mod) 2 + (nr) 2 1

E (_,)n Nq"h2m qd sin(m qd)

qn = [(mqd)2 - (nr) 2]

1a No- sh moh- sh mo0d ]  i 1 N- [sin(mqh) - sin(md)]

0i 0  a q mq
and

No  1+ sinh(
2mh )

2moh

sinl2m qh)

q 2 2moh

18



1.

C. PITCH

The linear set of complexed valued equations is

nj A=- hn  n = o,1, 2  j= , 2

where

n + 16 Uj [L'Po(nj) + Z D* P (nj)]} - i 32 U jT.Po(n,j)
n i0 q=l q q Wrm0 aj 0

Yn6

h = 8 {L-P (n,o). o0 + E D qP q(n,o)-ek -An -i 16 .T.P 0(no) e.
0 q=l q0 im

S I(ra/d) da { In=Uj = { ra-d)} for ,j=1,2,... U0 = - ' n =

= 3 h 3-a 2  1 ] mo h ch(moh)-2ch(mod)
"o -f -d 8 T-m-TZ -(m-d)sh(-m d

3qh 3 a(5 ) 2  1 cos(mqh) - 2ch(m d)

q (m-- 2 ] - mqd)sin'(mqd)' '

n { ( ) } for n = 1, 2, 3, ... o= { () - ( ) }for n=o

The expressions for Pot Pq, L, T, Dq remain the same as defined for sway.

The roll (Pitch) added moment of inertia is calculated as

a66 + i b66/, '  d {( )IDa = _ h--d [t H1 (mor) ao + r t K (m a) 8q +
PD a4 h-d aL~~ 0 r 0 q-1 j;R11  q qW- 1/2 N--

0 Ng2 2,n I (n~a)
- ( (Ia - 1 a)2 + oA0 + n n

n1 ~' l(d)

* 19



The expression for Bo , Bq remain the same except the B* values for roll are

given by
a 1 sh(m 0d) ch(m h) - 2ch(m d)

= 1 d (mod) + (mod) }

3 h 3 a 2 1  sin(m d) cos(mqh)-2 cos(mqd)Bql= ~ i e214 {[("- "- dd ] (m (mqd)
q - q

and the expressions for to and tq are

sh(m d) ch(m h) - ch(mo d)

to d mo (mo d-Y

sin(m d) cos(m qh) - cos(m qd)
tq - mqd (mqd)'

20q

20



REFERENCES

Abramowitz, M.; Stegun, I.A., (1964) "Handbook of Mathematical Functions."
National Bureau of Standards, Washington, D. C.

Bai, J., (1976) "The Added Mass and Damping Coefficients of and the Excitation
Forces on Four Axisymmetric Ocean Platforms." Naval Ship Research and
Development Center, report no. SPD-670-Ol, April

Bai, K. J.; Yeung, R. W. (1974), "Numerical Solutions to Free-Surface Flow
Problems." Tenth Symposium Naval Hydrodynamics, pp. 609-647, Cambridge,
Mass.

Garrison, C. J., (1975) "Hydrodynamics of Large Objects in the Sea, Part II.
Motion of Free-Floating Bodies." Journal of Hydronautics, vol. 9, No. 2,
pp. 58-63, April.

Garrett, C. J., (1971) "Wave Forces on a Circular Dock." J. Fluid Mech.,
vol. 46, part 1, pp. 129-139.

Isshiki, H. and Hwang, J. H., "An Axi-Symmetric Dock In Waves," Seoul
National University, Lorea, College of Engineering, Dept. of Naval Archi-
tecture, Report No. 73-1, Jan. 1973, 38 pp.

Kim, W. J., (1974) "On the Harmonic Oscillations of a Rigid Body on a Free
Surface." Journal of Fluid Mechanics, vol. 21, pp. 427-451.

Kritis, Ir. B., (1979) "Heaving Motions of Axisymmetric Bodies." The Naval
Architect, January, pp. 26-26.

MacCamy, R. C., (1961) "On the Heaving Motion of Cylinders of Shallow Draft."
Journal of Ship Research, December, Volume 5, No. 3.

McCormick, M. E.; Coffey, J. P.; Richardson, J. B., (1980) An Experimental
Study of Wave Power Conversion by a Heaving Vertical Circular Cylinder
in Restricted Waters," U. S. Naval Academy, Engineering Report EW 10-80,
March.

Newman, J. N., (1975) "Marine Hydrodynamics." The MIT Press, Cambridge,
Massachusetts and London, England.

Newman, J. N., (1976), "The Interaction of Stationary Vessels With Regular
Waves." Eleventh Symposium Naval Hydrodynamics, pp. 491-501, London,
England.

Wang, Shen, (1966) "The Hydrodynamic Forces and Pressure Distributions for
an Oscillating Sphere in a Fluid of Finite Depth." MIT Department of
Naval Architecture and Marine Engineering, Doctoral Thesis, June.

Yeung, R. W., (1975) "A Hybrid Integral-Equation Method for Time Harmonic
" Free Surface Flow." 1st. Int. Conf. Numer. Ship Hydrodynamics, Gaithers-

burg, Maryland, pp. 581-608.

I



ACKNOWLEDGEMENT

Professor T. Sabuncu would like to thank the Council for International
Exchange of Scholars for the support he received through his stay at MIT
as 3 visiting professor. Thanks are also due to Professors J. N. Newman,
R. Young, F. Noblesse, of MIT for their interest, discussions and to Professor
P. F. Wiggins of the U. S. Naval Academy whose interest made the computer
application possible.

Special thanks are also extended to Ms. Virginia Christensen and
Miss Sharon Vaughn for typing this report.

!)

,,o



)c

Figure 1

23



a
CA ca

z ws

z Ls

IL

L 44aD

cow cwCQ awp*w Qow l-

24



ADDED flASS RA IO FOR DRAFTS ,.3. FT,..3.S, FT

o 153

7.20 EXPERIMENTAL
S (McCormick)

U 5.4-
fl 'THIS THEORY

N

1 3,6*
0

OflGA3.RADSEC

1.8,

4.5 3.31 S.9 6.6 7.3 3.

DEPTHRADZUS

Figure 3

25



N

I- w
w 0 Co C

-4 4D

LaL
LL)

Q

C44C

U; r-

CL26



CD C
J.C

~LIM

r~4)

w 44

ID',

wozw =cw0Sw""

w 27



41M Ls

C C C

4 CD

W 14

28C



('1~4 a c* *

4z

w 14

U Ls

cm0

CDJ

-~29



I

I-t
4 aj

z 30



UU
1.e IxI

Z . - I-- * *-

- +

* w-

:>UI

~31

II-

!w

!N



--- ~ 4 cc a --.-.

iiK

4m L R o

ey 0

oz (i f) C4

gNU i32



UU fa

ww
a LL0

L9
wW
z3
S... C

cm

4.,w =Cow

33j



-c

U 4

w 4 4

43



a

z~4 4-6- z
w %

NI

*s L

.

I-j

OwA

35



a

Oil 0 - -

I-D

4 036



.44

LII0

9b U I

UL
.J B- I- *-IC

a

cu,

c;0

37a



IndD

C

d - -

Lo

w I

w w

B-..

-hm L9
led.

38c

1-4
Id-

4 4

38



CD

Id
t 

%

c Lo

UL

W 0

WW

ww

z CD
I C 0

39L



w4 M V V)

0. 4% 4% 4% 4

CL

w L

Luo

z

UAU

40



*4 4-

cc,-s

.4 ~ xo

+W 4

'+ X 4 4

C 41



I-

ww

V4 . .? ? .

I--- f-.

0

I-h

42



w (0

U)C' Z:~ Cu

*~( 0

\~ \'% N
I- I--I-I-

+0 0C

=COO owww""Wzi

w4



ww

C. CU U. U

4XQ~cO

-A
00(DI) 4

'a 44

---- --- ---



in m u <910 0'1W

3; a-IF- -I-- F-

(5)
w'9

w

0 C0

0

01) c9*

oCA 0OL..("=

g45



Ub m tv

a0*0

* U U

UP \9 cuW

I-rn-ICA

00 tA 0,4wm*

94



at a m cu

* 4 x 0 o t *X

Na

0

LC)

w w

00

'.447



M (00

zaa
jL

40a LL.

484

Abu&-( w .



040

a W a a

rog

49 
WA



Lb (3CU C; 0

(U ' 0 49 a 0

045

I-I
o 0

fuO

500



U) CV)~ CU w

4: cu co 4: e 4 4:*

E. - - E- IF- I-
4 x 0 0 0 +

4:
:3 0U) D

.4 04
WW 4:a

0 C ,

ww

lL

C-C,
C.) (UO

1-51



CU' W4.

04

4.0

in C9cu W

CkCW( 4 3L6L.O W j

52*



In 0V3c

0 x 0 0

030

w0 w
1-4 LL.

W W

5-53



I

Will

.Sb

IS ,54
*. II Uf Ut

U- 6- I.- I-"
4 9 0 +

= m-

=~0

C- ,

?*

• 4)• 4

$44

'4UID@



U
Ii.,
I

U

.4 U
* 0 0 0

* 0 0 0
U U U U U
£ 4 4 4 4

I- 6- I- I- I-
4 9 0 + N

S

H

ma
* %

- 4 cv~a- a
Sal GJ

o 0 Iz ifa
U

C-)-J I
*

0
*6

~- 0
we U 0 ml

0 0 0 00 0 0 0

4006.80 E4WS OOSaIh.h....Us.eWZS-

55



0

9.
w4 U lb

* 0 0 0* * 0 0
* U S S I U

C C C C C
I- I- I- U- U-
4 9 O 0 +

lb

C.,
N

ma
C-) 0~

'qC
-

£
LIJ

0
9-4

-JII ii

lb
0

Ye

~1~~~ 0
.6 6 0 U 0

0 9 0 0
* 0 0 0

CQQW~ E£SVb QCWh.Sa...~Us4WZl-

56



LL
11 1

"sr.

Acccoa£ Cm 0C CL464ae

% ' ~ % 57



p A A

S.
N

C
U.. U ('3 q*

* 0 * 0 4.
* * 0 0 '4 (U ('36*
* U I U 6 U U S
C C C C C C C C

.\ \ %. \ \ ' \ \
U- I- I- U- U- U- 6-U-

4 X 0 * 0 0 + ~
II

-Ps

=
= 0
L)

I- C
- w

C ~a*
0z

'=4 Ii
-J
- 0

'4

0

U, 6 6* ('3 6*
* 0 0

6~. 4. -

C~h50 ECAA(* UOWUda.O4OaBZ6-

58



* 0 0 I

* 4 rS
* I U U

* 00

* U9



. .. . i . . . . . . . ..

0,
m M b

'4 U (' m

£ £

F--

I.o

LU'J * l

- . .

: CC-) -~ g q,) lnlm,*,-,,CoOll~ ,, .

!-



1:c

UU

*w 0

I ACIL4Z 00 '46@OMZ

* U U 61



we 63 ,1 c5

I.. 6 U- I I- I

(- 0

0~

62o



Lnb

*.- 0 4 (U0q

* S U I U U 0

633



we U I'D IA
* 0 0 0

* S 0 0 w4 cia i'a me
* a S S I U S U
C C £ C C £ C C
9% 9% 9% 9% 9% 9% 9% 9%
I- U- U- U- U- U- I- I- U

4 X 0 P 0 0 + N 0Lug

0
I-.

II

=
L)
I-
I.-. 0~

W
w
0

El
-J £6

*M
'-.4

I.- w4@

U
0

S

0
I', IA

IA we* * 0 00 0 0

*CEL.43@ OOWh.Ia.~O.4WZU-

64



~ C S

' % 4%
I-.- a* - - - -

1-J Id sC

af Lo I
'-we

-65



tso

CL£

IId

0

C-)b

Cinaan C IAIA OOWU&LMO UJZw

0~66



VIA

LO 4

'4 (U ('Ito

* 0 0
* *La40

IIW

C "

* 0a
V: a

comwo CC-

67o



0 CP

IId

u *0

- V

68£



*1.

j Id
II-
0.0

0

-Jt h i

C-69



t- INITIAL DISTRIBUTION LIST

No. of Copies

Defense Documentation Center 20ICameron Station
Alexandria, Virginia 22314

Assistant Librarian 4
Technical Processing Division
U. S. Naval Academy
Annapolis, Maryland 21302

Academic Dean
U. S. Naval Academy
Annapolis, Maryland 21402

Director of Research
U. S. Naval Academy
Annapolis, Maryland

Division Director 1
Division of Engineering and Weapons
U. S. Naval Academy
Annapolis, Maryland 21402

Department Chairman 2
Naval Systems Engineering Department
U. S. Naval Academy
Annapolis, Maryland 21402

Professor B. Adee
University of Washington
Mechanical Engineering Department
Seattle, Washington 98195

Professor Ronald W. Yeung
Ocean Engineering Department
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Professor J. V. Wehausen
University of California
Naval Architecture Department
Jerkeley, California

Dr. June Bai 2
Code 1552
Naval Ship Research and
Development Center
Bethesda, Maryland 20084

71



No. of Copies

Dr. W. C. Lin 2
Code 1524
Naval Ship Research and
Development Center
Bethesda, Maryland 20084

Professor T. Sabuncu 50
Istanbul Teknik Universitesi
Gemi Insaa Fakultesi Taskisla
Taksim Istanbul Turkey

Ove Sundstrom1
The Royal Institute of Technology
in Stokholm
Department of iydromechanics
S710044 Stockholm 70, Sweden

K. W. Eggers1
Institut fUr Schiffbau
der Universit~t Hamburg
2 Hamburg 60, Lammersteth 90
Germany

72


